
Eur. Phys. J. B 62, 59–64 (2008)
DOI: 10.1140/epjb/e2008-00125-x THE EUROPEAN

PHYSICAL JOURNAL B

Magnon scattering by a symmetric atomic well in free standing
very thin magnetic films

R. Tigrine1,2, A. Khater1,3,a, B. Bourahla1,2, M. Abou Ghantous4, and O. Rafil2
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Abstract. A theoretical model is presented for the study of the scattering of magnons at an extended
symmetric atomic well in very thin magnetic films. The thin film consists of three cubic atomic planes
with ordered spins coupled by Heisenberg exchange, and the system is supported on a non-magnetic sub-
strate, and considered otherwise free from magnetic interactions. The coherent transmission and reflection
scattering coefficients are derived as elements of a Landauer type scattering matrix. Transmission and
reflection scattering cross sections are hence calculated specifically, as a function of the varying local mag-
netic exchange on the inhomogeneous boundary. Detailed numerical results for the individual incident film
magnons, and for the calculated overall magnon conductance, show characteristic transmission properties,
with associated Fano resonances, depending on the magnetic boundary conditions and on the magnon
incidence.

PACS. 75.30.Ds Spin waves – 75.70.Ak Magnetic properties of monolayers and thin films – 75.75.+a
Magnetic properties of nanostructures

1 Introduction

Using modern techniques it is possible to prepare well-
defined nanostructures as constitutive elements of meso-
scopic systems in a variety of devices. The study of nanos-
tructures in general, and at surfaces in particular, has
been the subject of major research efforts in recent years.
There is, as a consequence, an increasing volume of ex-
perimental data to elucidate the structural [1–4], mag-
netic [5–7], and electronic [8–11], properties of finite quasi-
1D nanostructures on surfaces.

Scattering and localisation phenomena in low dimen-
sional systems have also been of interest. They are now of
renewed interest in the context of modern devices. Most of
the recent research in this area has been oriented towards
the study of electronic scattering in quasi-one-dimensional
systems. The understanding of coherent electronic trans-
port in the mesoscopic regime and its generalization to
multi-terminal systems have been provided by the formal-
ism of Landauer [12], and Büttiker [13], who related the
conductance of the system to its scattering matrix.

Multiple scattering and quantum interference are not
limited, however, to the sole area of electronic transport.
In a variety of problems they can become important for the
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coherent transport of other types of excitations via nanos-
tructures embedded in low dimensional systems [14–17].

Because of the relevance of spin dynamics in certain
devices for information processing, the problem of local-
ized magnons, in particular [18], and of their coherent
transport has received some attention recently. At low
temperatures, these devices are mesoscopic in the sense
that their quantum states must be described by coher-
ent wave functions extending over the entire system, and
quantum-mechanical interference effects become impor-
tant [19]. This is illustrated recently for spin currents in
mesoscopic Heisenberg systems [20].

The subject of magnon scattering at a surface im-
perfection in ultrathin films has been considered in the
past [21]. In previous work we have also systemati-
cally studied the spin dynamics across an inhomogeneous
atomic boundary separating ultrathin Heisenberg ferro-
magnetic films [22], and the magnon coherent conductance
via atomic nanocontacts [23]. Our general purpose is to
contribute to the understanding of coherent magnon scat-
tering and transmission in magnetic circuits and via nano-
juntions. Theses problem are fundamental for applications
in magnon devices operating in the coherent regime.

It has been shown [22,23], that the conductance char-
acteristics of Fano resonances play a preferential and im-
portant role for the magnon conductance. This effect [24],
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is known in various branches of condensed matter physics.
Since the Fano conductance characteristics are modified
in different situations and for different nanogeometries,
we present in this work a model for the study of co-
herent magnon transport via an extended atomic well
which constitutes the inhomogeneous boundary between
two very thin magnetic films. The system is supported
on a non-magnetic substrate, and considered otherwise
free from magnetic interactions. Present nanotechnolo-
gies could quite feasibly permit the production of such
a system with continuous tuning of its relevant structural
and magnetic parameters. The purpose is hence to give
a detailed understanding of the relation between coherent
magnon conductance via the extended well boundary, and
the inhomogeneous character, structural and magnetic, of
the latter.

The classical magnetic dipolar interactions have not
been, in general, an important component in stabilizing
bulk magnets, since the strong quantum-mechanical ex-
change couplings dominate. It is possible that the dipolar
interactions may dominate in real nanosystems and for
weak exchange. In our model, however, dipole interactions
are neglected assuming sufficiently strong exchange.

The present model does not consider thermal ef-
fects [20], or effects related to lead connections [25], or
inelastic scattering effects due to additional internal de-
grees of freedom of the nanostructure [26].

The paper is organised as follows. In Section 2 we
present the basic elements of the model, describing the
spin dynamics in the magnetic films which constitute ef-
fectively quasi-2D wave guides, on either side of the atomic
well boundary. In Section 3 we study the spin dynam-
ics of the well boundary itself. The transmission and re-
flection coefficients are then derived, using the matching
method [27–29]. In Section 4 numerical applications are
presented for three different cases of the local magnetic
exchange on the boundary, where we analyse for each case
the coherent magnon conductance. The numerical appli-
cation of the model, and the conclusions that follow, are
presented in this section.

2 The model elements

Consider an extended atomic well as shown in Figure 1.
The model consists of two magnetic films, each made up
of a lattice of three atomic planes, joined by the well. The
surface is in the xy-plane, and the y-axis represents a high
symmetry direction for the system.

The magnetically ordered system is described by a
Heisenberg Hamiltonian, and the spins are taken in the
ground state normal to the atomic planes. For ferromag-
netic exchange interactions between nearest neighbours,
the Hamiltonian may be written as

H = −2Σp�=p′Jpp′Sp · S′
(1)

Sp (Sp′) are spin vectors, |Sp| = S for all p ≡ n, m, s,
which denote integers counting sites along the x, y and z
directions. In this notation the sites in Figure 1 read as
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Fig. 1. Schematic representation of an extended atomic well
boundary, consisting of two ferromagnetic thin films on either
side of the well.

F (0, 0, 0), G(0, 0, 1), C(–1, 0, 0), D(–1, 0, 1), E(−1, 0, 2).
Let Jpp′ = J denote the magnetic exchange between near-
est neighbours for all sites in the thin magnetic films. The
system is supported on a non-magnetic substrate, and con-
sidered otherwise free from magnetic interactions.

The well boundary, delimited over n ∈ [−2, +2], is an
inhomogeneous nanostructure embedded in the thin film.
The well boundary may also be considered in general as
magnetically inhomogeneous since the local exchange may
differ from the rest of the system. This local exchange
may be prepared by the insertion of a different type of
magnetic ion than that for the rest of the system, also Jpp′

may be modified by local elastic constraints or by external
probes. If Jd denotes the exchange in the well boundary,
over n ∈ [−2, +2], we shall consider three possibilities for
γ = Jd/J , namely γ < 1 (boundary magnetic softening),
γ = 1, and γ > 1 (boundary magnetic hardening).

The method used in this paper to study the spin dy-
namics is based on the equations of motion for the spin
precessions for the sites p. Consider the spin precession
ζ±p(t) = ζpx(t) ± iζpy(t), where ζpα(t) = Spα(t) − 〈Spα〉,
the brackets denote thermal averages, and α denotes the
Cartesian directions. The details of this method are de-
scribed elsewhere [18].

For sites inside the magnetic films distant from the
boundary, over n ≤ −3 and n ≥ 3, the equations for spin
dynamics, may be cast in the form

[ΩI − D(exp(iφy), ηx)]|ζ±p〉 = 0. (2)

Ω = ω/ω0 = �ω/2JS is a dimensionless frequency
for the magnetic films. I denotes a unit matrix, and
D(exp(iφy), ηx) is a spin dynamics matrix for the mag-
netic film lattice. The normalised wave vector φy = kya,
where a is the lattice parameter, runs over the first Bril-
louin zone in the domain [−π, π], and η is a generic phase
factor between neighbouring sites along the x-direction.
In this representation |ζ±p〉 is the vector of the spin pre-
cessions for a unit cell in the magnetic films.

The eigenmodes of equation (2) are characterized by
exp(± iφy) phase factorsalong the y-axis, and by the phase
factor doublets {ηx, η−1

x } along the x-axis. The propagat-
ing magnons correspond to |ηx| = 1, in which case we
can write ηx = exp(iφx), where φx = kxa runs over the
BZ[−π, π]. In contrast, the evanescent eigenmodes are de-
termined from the condition |ηx| < 1 [29].
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These eigenmodes are calculated in general as a func-
tion of the frequencies Ω and the normalized wave vectors
φy, when the secular equation of the spin dynamics ma-
trix [ΩI−D(exp(iφy), ηx)] vanishes. For the system under
study the secular equation may be expressed as a polyno-
mial in ηx

ΣAs(exp(iφy), Ω)ηs
x = 0. (3)

As(exp(iφy), Ω) are the polynomial coefficients, s = 1, 2,
3. Due to the Hermitian nature of the spin dynamics in
the absence of strong external magnetic fields, both ηx

and η−1
x verify symmetrically the polynomial forms in the

magnetic films.
The solutions of equation (3) yield the eigenmodes

{ηxj} of the system, j ∈ {1, 2, 3}. For the non propa-
gating eigenmodes, only the evanescent modes |ηxj | < 1
are retained, the divergent ones considered non-physical.
There are, hence, only three modes of physical interest.
The magnetic films may be seen as effectively wave guides
that confine the magnons along the z-direction.

3 Boundary spin dynamics and scattering

To analyse the scattering in the presence of an embedded
nanostructure, such as the extended well in Figure 1, it is
essential to know the evanescent |ηxj | < 1, as well as the
propagating solutions |ηxj | = 1, for a complete description
of the scattering processes. In the absence of strong in-
teractions between the elementary spin excitations in the
films, these do not couple and we can treat the scattering
problem for each eigenmode separately.

For a magnon ηxj incident along the x-direction at a
given φy and frequency Ω, the scattering at the boundary
yields coherent reflected and transmitted fields.

Let rjj′ and tjj′ denote the reflection and transmis-
sion coefficients that describe the scattering from incident
mode j into mode j′. For sites in the films distant from
the boundary, the spin precessions field {ζ±p }, n ≤ −3,
and n ≥ 3, may be expressed in terms of an appropriate
superposition of the eigenmodes of the perfect film at the
same frequency.

Consider a Hilbert space constructed from the basis
vectors [|R〉, |T 〉] for reflection and transmission into dif-
ferent eigenmodes, and let |ζ±p(nanowell)〉 group the spin
precessions for an irreducible set of sites in the boundary,
n ∈ [–2, +2]. The equations of motion for the boundary
domain, coupled to the rest of the system, may hence be
written in terms of the composed vector [|ζ±p(nanowell)〉,
|R〉, |T 〉].

Using the matching approach [29], and the appropriate
transformations that relate the spin precessions field in
the matching and then film domains, then yields a square
inhomogeneous matrix form

[ΩI − D(exp(iφy), {ηxj′}, γ)][|ζ±p(nanowell)〉,
|R〉, |T 〉] = −|IH , ηxj〉. (4)

The vector −|IH , ηxj〉, mapped appropriately onto the
basis vectors in the constructed Hilbert space, re-
groups the inhomogeneous terms describing the incident

magnons. As pointed out earlier, γ describes the hardening
or softening of the local exchange on the well boundary.

The reflection and transmission processes under study
are described in terms of the scattering matrix ele-
ments [12,13], and these are given explicitly for any
given incident magnon j, by the reflection coefficients
{Rjj′} ≡ |R〉 for the reflected magnons j′, and the trans-
mission coefficients {Tjj′′} ≡ |T 〉 for the transmitted
magnons j′. The solutions of equation (4) give the re-
flection, Rjj′ , and transmission coefficients, Tjj′ , in the
magnetic films. They also give the spin precessions vec-
tor [|ζ±p (nanowell)〉 for the irreducible set of spins of the
boundary.

To compare theory and measurement, we need to cal-
culate the reflection and transmission cross sections rjj′

and tjj′ , and these are calculated at the scattering fre-
quency Ω, in the form

rjj′ = (vgj′/vgj)|Rjj′ |2
tjj′ = (vgj′/vgj)|Tjj′ |2. (5)

The scattering cross sections are normalised with respect
to the group velocities of the magnons to obtain unitarity
for the scattering matrix. vgj is the group velocity of the
eigenmode j, it is equal to zero for evanescent modes.

Furthermore, it is possible to define total reflection and
transmission cross sections for a given eigenmode j at fre-
quency Ω, by summing over all the contributions of the
scattered magnons

rj(φy, Ω) = Σj′rjj′ (φy , Ω)
tj(φy, Ω) = Σj′ tjj′ (φy , Ω). (6)

In order to describe the overall transmission of a meso-
scopic multichannel system at a given frequency Ω, it is
also useful to define the total magnon boundary conduc-
tance, or transmittance, σ(φy , Ω)

σ(φy , Ω) = ΣjΣj′tjj′ (φy, Ω). (7)

The sum is carried out over all input and output channels
at the frequency Ω and angle φy. The transmission scat-
tering cross section tj(φy , Ω) per incident magnon j, and
the conductance of the system σ(φy , Ω), are important
quantities to calculate as each corresponds to an experi-
mentally measurable observable.

4 Numerical applications and discussion

The film magnons may be calculated for any given choice
of the normalized wave vector φy, and their dispersion
branches presented as a function of φy. There are in
general three magnon branches in the present case, and
these may be symmetric or asymmetric with respect to
the central axis along the x-direction. Symmetric modes
correspond to spin precessions that satisfy the conditions
ζ±n,m,N = ζ∓n,m,N±1, whereas asymmetric modes satisfy
the condition ζ±n,m,N = ζ±n,m,N±1, and N is the total
number of atomic planes along the z-axis.
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Fig. 2. Magnon dispersion curves for the ferromagnetic thin
films made up of three magnetically ordered layers, presented
for the special case of φy = 0 as a function of φx in its BZ.

4.1 φy = 0

Typical magnon dispersion branches, j = 1, 2, 3, are pre-
sented in Figure 2 for φy = 0. These are propagating
modes in the frequency intervals

Ω1 = [0, Ω1,max = 4]
Ω2 = [1, Ω2,max = 5]
Ω3 = [3, Ω3,max = 7].

There is one acoustic mode, j = 1, which frequency tends
to zero when φy tends to zero, and two optical modes,
j = 2, 3.

The numerical results for the scattering effects are pre-
sented for three different possibilities as regards the lo-
cal magnetic exchange, γ = Jd/J , on the well boundary,
namely for γ = 0.9 (magnetic softening on the boundary),
γ = 1 (homogeneous magnetic exchange throughout the
system), and γ = 1.1 (magnetic hardening on the bound-
ary).

The numerical results for the reflection and transmis-
sion scattering cross sections are presented in Figure 3 for
the respectively incident magnons modes j = 1, 2, and 3.
The individual figures are arranged in rows for the varia-
tion of the local magnetic exchange, from softening at the
top row to hardening at the bottom, and in columns per
magnon mode, ranging from 1 at the left to 3 at the right.
The transmission (continuous) and the reflection (dotted)
cross sections verify the unitarity condition for the scatter-
ing matrix, and this is used throughout as a check on the
numerical calculation. For each case, we present, for com-
parison, the transmission histogram per magnon mode for
the magnetic films. It is important to distinguish between
the spectral features which appear at Ω = 0, 1, 3, 4, 5,
7, and which correspond to the effects coming from the
boundaries of the propagating interval for the magnons,
at the chosen wave vector φy, from other spectral features.
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Fig. 3. Numerical results for the reflection and transmission
scattering cross sections, for magnon modes j = 1, 2 and 3, for
φy = 0, as a function of the dimensionless frequency Ω. See
text for details.

From a study of the spectra for modes 1 and 2, we
note that the maxima and minima of their reflection and
transmission spectra are displaced to higher frequencies
in the domain Ω =∼ [2.5, 2.9], with increasing local mag-
netic exchange on the boundary. This is the signature for
a Fano resonance, and attests to the occurrence of a lo-
calized spin mode on the well boundary. It is interesting
to note that the two modes 1 and 2 interact with this
localized mode, whereas the third mode 3 shows no such
resonance in its spectra, since its minimum frequency in
its propagating interval lies beyond the domain. The be-
haviour of the acoustic mode in the left column is oth-
erwise different from that of the optic modes in the two
columns to the right. Whereas the transmission cross sec-
tion decreases for mode 1 with increasing γ, it increases
significantly for modes 2 and 3. This shows how reinforc-
ing the magnetic exchange on the well boundary can offset
the scattering effects due to the defect boundary, at least
for the optic magnons.

4.2 φy = π/4

Numerical results are presented next for the choice of
φy = π/4. In this case the propagating magnons appear
in the frequency intervals

Ω1 = [0.55, Ω1,max = 4.55]
Ω2 = [1.55, Ω2,max = 5.55]
Ω3 = [3.55, Ω3,max = 7.55].

The numerical results for the reflection and transmission
scattering cross sections are presented in Figures 3a – 3c
for incident magnons j = 1, 2, and 3, respectively, and for
the three possibilities of the local magnetic exchange on
the boundary, namely γ = 0.9, γ = 1, and γ = 1.1. It is
useful to note that frequencies Ω = 0.55, 1.55, 3.55, 4.55,
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Fig. 4. (a) The calculated reflection r1 and transmission t1
cross sections for the acoustic magnon mode incident on the
extended well at φy = π/4, for the three possibilities of lo-
cal magnetic exchange on the boundary, γ = 0.9, 1, and 1.1.
(b) As in (a), presenting here the calculated reflection r2 and
transmission t2 cross sections for the optic magnon j = 2, in-
cident on the extended well. (c) As in (a), presenting here the
calculated reflection r3 and transmission t3 cross sections for
the optic magnon j = 2, incident on the extended well.

5.55, 7.55, correspond to the boundaries of the propagat-
ing intervals for these magnons, for φy = π/4.

Figure 4a presents the reflection and transmission cross
sections for magnon j = 1. This is the acoustic mode prop-
agating in the interval Ω1 = [0.55, Ω1,max = 4.55], along
the x-direction. Up to Ω ≈ 1.55 the reflection (transmis-
sion) cross sections r1(t1), are quite comparable for all
three values of the local magnetic exchange on the bound-
ary. This is probably due to the total absence of other
propagating magnons in its frequency interval, also to the

properties of the acoustic magnon at relatively long wave-
lengths. The critical changes in the spectra that show up
for Ω ≈ 1.55 do not correspond to a Fano resonance since
they are unaffected by the variation of the local magnetic
exchange on the boundary. The minima (in transmission)
and maxima (in reflection) are essentially due to the in-
teraction on the boundary between the acoustic mode and
the optic mode j = 2 which sets in as a propagating mode
at Ω = 1.55 for the interval Ω2 = [1.55, Ω2,max = 5.55].
The behaviour of the reflection r1, and transmission t1,
cross sections for the mode j = 1, changes strongly for
frequencies Ω > 1.55, as the cross sections undergo con-
siderable variation with the changes of the local magnetic
exchange on the boundary. Furthermore, the minima of
the transmission spectra are displaced to higher frequen-
cies in the domain Ω =∼ [3, 3.5] with increasing γ. This
is the signature for a Fano resonance, and attests again to
the occurrence of a localized spin state on the boundary.

Similarly, Figure 4b presents the reflection and trans-
mission cross sections for the magnon j = 2, for the
three considered γ possibilities. This is an optic mode
propagating along the x-direction in its interval Ω1 =
[1.55, Ω1,max = 5.55]. The minima of the transmission
cross section, t1, present a Fano like resonance and are
displaced to higher frequencies with increasing γ, in the
frequency domain Ω =∼ [3, 3.5]. This confirms the exis-
tence of a localized spin mode on the atomic well bound-
ary. For Ω > 3.5, the transmission and reflected spectra of
the optic magnon j = 2, present a complicated behaviour.
Ω = 3.55 marks the frequency at which the second optic
magnon j = 3, comes in as a propagating mode. This ex-
plains the sudden modifications in the spectra around this
frequency due to the interaction at the boundary between
the two optic magnons. However, there is an additional
complexity arising from γ effects. And we distinguish for
Ω > 3.55, two types of behaviour. For magnetic softening,
the reflection cross section r1 increases relatively mono-
tonically with increasing frequency for Ω ≥ 3.55 and the
transmission cross section t1 decreases correspondingly. In
contrast for magnetic hardening, and even for γ = 1 which
represents a homogeneous magnetic exchange throughout
the system, the reflection cross sections r1 decrease up
to Ω ∼ 4.7, then increase to unity at the upper limit
Ω2,max = 5.55 of the propagating interval for this magnon.
Nevertheless, the rapidly changing and the varying be-
haviour of r2 and t2 with the γ variations, does not signal
a localized spin mode on the boundary in this frequency
domain.

Figure 4c presents the reflection and transmission cross
sections for the magnon mode j = 3. This is the optic
mode propagating along the x-direction in the interval
Ω3 = [3.55, Ω3,max = 7.55] for φy = π/4. Again there is
no evidence for Fano resonances and localized spin modes
on the boundary domain. The scattered spectra for the
reflection r3 and transmission t3 cross sections do how-
ever suffer important changes across the fixed reference
point Ω2,max = 5.55, when the optic magnon j = 2 be-
comes evanescent. Less important changes in this spec-
tra also manifest themselves across the fixed reference
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Fig. 5. The calculated total magnon conductance, σ(φy, Ω),
across the inhomogeneous well boundary, for magnons incident
from within the very thin magnetic films under study. The
histogram corresponds to the magnon conductance in the thin
magnetic films.

point Ω1,max = 4.55 for magnetic hardening, and even for
γ = 1 which represents a homogeneous magnetic exchange
throughout the system.

The total magnon conductance of the system σ(φy , Ω),
is useful to calculate, as it corresponds to an experimen-
tally measurable quantity, for example for thermal trans-
port across such embedded nanostructures. σ(φy , Ω) is
calculated for the three analysed possibilities of the lo-
cal magnetic exchange. The numerical results are pre-
sented in Figure 5. The conductance is consistently less
or equal to two magnons throughout the frequency do-
main Ω ∈ [0.55, 7.55]. Another general feature of the total
conductance is that it increases with increasing γ, which
is to be expected as this corresponds to increasing short
range order on the joint nanostructure between the two
thin magnetic films. Note that the presence of a Fano res-
onance and a corresponding localized spin state is further
confirmed in the frequency domain Ω =∼ [2.8, 3.55].

In conclusion, we present a detailed theoretical model
for the study of the coherent magnon transport via an
atomic well boundary between very thin magnetically or-
dered films. The spins are taken as ordered normal to
the film surface. In particular, we have specifically in-
vestigated the influence of the changing inhomogeneous
boundary conditions, and of the angle of incidence for film
magnons, on the scattering properties across the embed-
ded extended well for these incident magnons. The con-
ductance characteristics of Fano resonances are shown to
be specific to the system geometry, and these resonances
play a corresponding and characteristic preferential role
for the overall magnon conductance spectral features. The
evaluation of the thermal transport due to magnon con-
ductance is a straightforward calculation, but is not our
primary objective in this paper. It is also possible that the
magnon scattering properties could change if the spins are
chosen to be ordered along the x-direction rather than the
z-direction, and this is the subject of a future publication.
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du Maine for their study visit. A.K. should also like to thank
the Department of Physics at McGill for his stay.

References

1. V. Shchukin, D. Bimberg, Rev. Mod. Phys. 71, 1125
(1999)

2. B. Gambardella, M. Blanc, L. Burgi, K. Kuhnke, K. Kern,
Surf. Sci. 449, 93 (2000)

3. K. Kern, H. Niehaus, A. Schatz, P. Zeppenfeld, J. Goerge,
G. Comsa, Phys. Rev. Lett. 67, 855 (1991)

4. S. Rousset et al., Materials Sc. Eng. B 96, 169 (2002)
5. P. Gambardella, A. Dallmeyer, K. Maiti, M. C. Malagoli,

S. Rusponi, P. Ohresser, W. Eberhardt, C. Carbone, K.
Kern, Phys. Rev. Lett. 93, 077203 (2004)

6. A. Vindigni, A. Rettori, M.G. Pini, C. Carbone, P.
Gambardella, Appl. Phys. A 82, 385 (2006)

7. N. Weiss, T. Cren, M. Epple, S. Rusponi, G. Baudot, A.
Tejeda, V. Repain, S. Rousset, P. Ohresser, F. Scheurer,
P. Bencok, H. Brune, Phs. Rev. Lett. 95, 157204 (2005)

8. J.N. Crain, D.T. Pierce, Science 7, 703 (2005)
9. L. Bürgi, O. Jeandupeux, A. Hirstein, H. Brune, K. Kern,

Phys. Rev. Lett. 81, 5370 (1998)
10. Y. Hasegawa, P. Avouris, Phys. Rev. Lett. 71, 1071 (1993)
11. J. Repp, G. Meyer, K.H. Rieder, Phys. Rev. Lett. 92,

036803 (2004)
12. R. Landauer, IBM J. Res. Dev. 1, 223 (1957); R. Landauer,

Philos. Mag. 21, 863 (1970)
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